
*AD-A269 602-

EXPECT: Intelligent Support
* for Knowledge Base Refinement

Cecile Paris and Yolanda Gil
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, California 90292

January 1993
* ISIIRR-93-339

*
ELEC'T
SEP 2 11993ST A

0

0

0

* 93-21775

FORM APPRO VEDREPORT DOCUMENTATION PAGE oUS NO. 0704-018.

Public rpolring burden for this collection of kIlformtion is estimated to everage 1 hour per response. Including the time for reviewig Inetnietloiw. seerchn exitng data
sourcee, get ofng end ma•ntaining the data needed, and completing and reviewing the collection of Inforranihin. Send comments re#grdirn this burden estim•ted or any
other aspec•t b colection of IInonmation, including suggeetings for reducing this burden to Washington Headquarlers Services. Directorate, for tnformatlon Operatlon
end Repoft, 1215.• efemon Davis highway, Suite 12 A "ton, VA 22202-4302. and to the Office of management and Budget. Paperwork Reduction Proec (0704-01114
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1993 Research Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

EXPECT: Intelligent Support for Knowledge Base Refinement DABT63-91-C-0025

6. AUTHOR(S)

Cecile Paris and Yolanda Gil

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON
REPORT NUMBER

USC INFORMATION SCIENCES INSTITUTE

4676 ADM!RALTY WAY RR-339
MARINA DEL REY, CA 90292-6695

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

ARPA AGENCY REPORT NUMBER

3701 Fairfax Drive
Arlington, VA 22203

11. SUPPLEMENTARY NOTES

T

12A. DISTRIBUTIOWAVAILABILITY STATEMENT 12B. DISTRIBUTION CODE

UNCLASSIFIED/UNLII ITED

13. ABSTRACT (Maximum 200 words)

Effective knowledge acquisition amounts to having good sources of expectations that can provide guidance
about what knowledge needs to be acquired from users. Current approaches to knowledge acquisition often
rely on strong models of the problem-solving method used in the task domain to form expectations. These
methods are often implicit in the tool, which is a strong limitation for their use in different domains. Addi-
tionally. these tools require an understanding of the method to be used that most experts find difficult to
overcome. In this paper we present EXPECT, a novel approach to knowledge acquisition based on the EES
architecture that forms expectations based on the current knowledge contained in the system about the task.
and are not hard-coded in the tool. We show how the explicit representation of domain principles and its
relation to compiled procedural knowledge enables a system to form expectations as to what knowledge is
missing or incorrecL This capability coupled with a dialogue-based explanation facility makes communica-
tion with the knowledge acquisition tool more natural to domain experts.
14. SUBJECT TERMS 15. NUMBER OF PAGES

examples, natural language generation, descriptions 15

16. PRICE CODE

1t SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED ITNCLAS SIFITED UNCLASSIFIED U'rNLIMITED

NSH 7§40-01-2W0-5600 landard Form 295 (Rev. 2-9)
Pr•escribed by ANSI Std. Z39-18
291-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this Information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling In each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Block 2. Report Date. Full publication date Denotes public availability or limitations. Cite any
including day, month,a nd year, If available (e.g. 1 availability to the public. Enter additional
Ian 88). Must cite at least the year.~ limitations or special markings in all capitals (e.g. 0jan 8).Mus cit atleat th yer..NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered.

State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter Inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title Is taken from DOE - See authorities.
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. Wher a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number, and Block 12b. Distribution Code.
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Leave blank.
in parentheses. DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical

element numbers(s), project number(s), task Reports.
number(s), and work unit number(s). Use the NASA - Leave blank.
following labels: NTIS - Leave blank.

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
PE - Program WU - Work Unit 200 words) factual summary of the mostElement Accession No. significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages. 0
Address(es): Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.-19. Security Classifications. Self-
performing the repor. explanatory. Enter U.S. Security Classification in 0
Block 9. Sponsoring/Monitoring Agency Names(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory UNCLASSIFIED). If form contins classified

Block 10. Sponsoring/Monitoring Agency information, stamp claz-ýification on the top and

Report Number. (If known) bottom of the page.

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
Information not included elsewhere such as: be ,:.3mpleted to assign a limitation to the
Prepared In conpev n with...; Trans. of ... ; To be abstract. Enter either UL (unlimited) or SAR (same
published in... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract Is to be limited. If blank, the abstract
or supplements the older report. Is assumed to be unlimited.

Standard Form 298 Back (Reo. 2-9

EXPECT: Intelligent Support for Knowledge Base
Refinement 1... T f..

Cecile Paris and Yolanda Gil I tIs ,-

Information Sciences Institute
and Department of Computer Science .

University of Southern California Y........................
4676 Admiralty Way D1 t It!O;m I

Marina del Rey, CA 90292 ,
U.S.A. -,------

0 A1,iI speb r

Abstract

Effective knowledge acquisition amounts to having good sources of expectations that can provide
* guidance about what knowledge needs to be acquired from users. Current approaches to knowledge

acquisition often rely on strong models of the problem-solving method used in the task domain to
form expectations. These methods are often implicit in the tool, which is a strong limitation for
their use in different domains. Additionally, these tools require an understanding of the method
to be used that most experts find difficult to overcome. In this paper we present EXPECT, a novel

* approach to knowledge acquisition based on the EES architecture that forms expectations based on

the current knowledge contained in the system about the task, and are not hard-coded in the tool. We

show how the explicit representation of domain principles and its relation to compiled procedural
knowledge enables a system to form expectations as to what knowledge is missing or incorrect.

This capability coupled with a dialogue-basd explanation facility makes communication with the

* knowledge acquisition tool more natural to domain experts.

1 Introduction

Domain experts are very seldom proficient users of computers. People who build tools for

knowledge-based systems, however, are proficient. This might be why interactions with these
tools are not always very easy for domain experts. Knowledge acquisition tools are no exception,

and, even though our systems' "social skills" are continuously improving, field experiences report
things such as:

"Automated (knowledge acquisition) tools are often fairly complex and require the

skills of a knowledge engineer for their use." [Kitto, 19891

Previous work in the Explainable Expert System (EES) project [Neches et aL, 1985, Swartout et

aaL, 1991, Swartout and Smoliar, 1987b] moved toward improving communication with expc,',- by
giving them information in terms they can relate to, highlighting domain principles and domain facts
as opposed to programming details. We find that the architecture of EES allows two mechanisms

that we believe of central importance for knowledge acquisition: content-based expectations and
interaction at the knowledge level.

Some systems form expectations based on the syntactic structure of the current knowledge (e.g.,
[Davis, 19761). Others commit to a particular problem-solving method and form expectations
bated on the method (e.g., [Eshelman and McDermott, 1986, Marcus and McDermott, 19891).
These expectations are fixed. Instead, our approach creates expectations based on the content
of the current knowledge base by understanding the function of each piece of information in the
reasoning process. Most knowledge-based systems contain operational knowledge extracted from
experts. Experts' operational knowledge is usually in the form of compiled procedures, however. 0
As a result, reasons for specific actions are not readily available [Anderson, 19831. Instead, we take
domain principles (factual and problem-solving knowledge) entered by the user and automatically
transform them into a more efficient procedural representation. Consequently, the system has all
the information about this compilation in hand, so it has a handle on the role of each piece of
knowledge. This allows it to form expectations as to what should be acquired based on the content 0
of its existing knowledge base. We show in this paper that this is a tremendous advantage for a
knowledge acquisition tool.

Furthermore, the system can take advantage of this explicit representation of the domain princi-
ples and their relation to the compiled knowledge to communicate with the user at the knowledge
level. That is, it presents to the user justifications of the reasoning process at various levels of
abstraction, independently of the specific steps that appear in the execution trace [Moore and
Paris, 1991, Moore, 1989, Paris, 1991]. These explanations are given in natural language, in an
interactive fashion.' This allows the user to navigate through the problem solving traces more
easily. Consequently, the detection of faults in the knowledge base is guided by the user in natural
language, abstracted away from the implementation, and closer to the way an end-user is accus-
tomed to communicate with colleagues. In summary, during knowledge acquisition, the system
both learns at the knowledge level [Newell, 1981, Dietterich, 1986] (acquiring new knowledge
from the expert) and interacts at the knowledge level (communicating in terms of the domain and
not of the implementation).

The rest of the paper runs as follows. We begin with an overview of the EXPECT framework,
describing how the knowledge base is structured and how problem solving works. Then we show
two hypothetical scenarios to illustrate how the knowledge acquisition tool will form expectations
about missing information. The examples are drawn from a transportation domain that evaluates
proposed routings, taking into account restrictions on objects transported, destination points, and
vehicles used. The remaining sections present a discussion of our approach and future directions

of research.

2 EXPECT
0

wXPECr builds upon previous work on the Explainable Expert System (EES) framework [Neches et
al., 1985, Swartout et al., 1991, Swartout and Smoliar, 1987b], which allows for the construction
of expert systems that can provide good explanations of their behavior. In this section, we briefly

'Our use of the word explanation is in reference to how a system Justifies its reasoning, as op-'sce to t1f '.. of
the word for explanaion-basel learning methods where explanations refer io proofs.

2

describe the features of the framework that were found necessary to support good explanations and
explain why the same features also allow for the construction of intelligent knowledge acquisition

0 tools. The next section then illustrates our points.
In order to produce good explanations, a system must represent its knowledge in a structured way,

separating the different kinds of knowledge (e.g., domain facts, problem solving knowledge, etc).
Furthermore, a system must have the knowledge necessary to justify its behavior (e.g., [Clancey,
1983a, Clancey and Letsinger, 1981, Clancey, 1983b, Swartout and Smoliar, 1987a, Swartout

0 et al., 1991, Swartout, 1981, Chandrasekaran and Swartout, 1991]). Finally, it must be able
to produce coherent text and to clarify and elaborate on its own explanations (Moore, 1989,
Moore and Swartout, 1989, Moore and Swartout, 19911. This is indeed needed as, often, a user has
follow-up questions (e.g., [Pollack et al., 1982, Moore, 1989]). To have good explanations, then,
the knowledge bases and execution traces of conventional expert systems have to be considerably

0 enriched.
In EXPECT, the different kinds of knowledge that comprise an expert system are specified

distinctly in a high-level specification language. The specific actions that are to be executed by the
system to solve a specific problem are derived from these knowledge bases by the system, and a
record of the derivation is stored to provide the design rationale needed. The resulting architecture

0 is shown in Figure 1.
The knowledge bases capture what the system knows about the domain and how to solve

problems in that domain. They comprise:

"* A domain descriptive knowledge base (or domain model), which stores definitions and facts
in the domain of the expert system. The domain model is written in the LOOM knowledge
representation formalism [MacGregor, 19881.

"* A problem-solving knowledge base, which contains an organized collection of plans. The
plan language allows for an explicit representation of intent (what is to be done) and supports
a wide range of control structures [Project, 19931.

As an example, consider Figures 2 and 3, which contain samples of these knowledge bases for
a system in the transportation domain. In that application, the domain model includes descriptions
of ports, seaports, and airports. The representation of a seaport is shown in Figure 2:
A seaport is a type of port, and it has attributes such as its location, piers, berths,
and storage areas.2

Figure 3 shows two of the plans of the problem-solving knowledge base. The capability describes
the goals that the plan can achieve, the method represents the body of the plan, and the result type
indicates what is returned by the method. The first plan can be used to determine whether a specific
type of ship is supported by (or "fits in") a given seaport. This is done by testing whether the length
of the ship is less than the maximum vessel length allowed in that particular seaport. The second
plan finds the maximum ship length a seaport supports based on the length of its berths.

Given a high-level goal, an automatic program writer (APW) integrates these structured knowl-
edge bases by refinement and reformulation from that goal [Neches et aL, 1985, Swartout et aL,
19911, to produce a system that will be capable of solving specific instances of that goal. The
APW records all its steps and decisions in an annotated design history. For example, given the

2We use the prefix "r-" to indicate names of relations.

3

Expectation-based tools for Knowledge Acquisition

pbi wu reesign
h o e t h e

Termine- •w hr t ofi a s re f m t i h Explainer

thatute 1:Asystemaknowsrofrasendiatedion tho mainXmode. The design history isd thekno avaladeblse

forpthesytsem d to i os t explxpaians reaonn gein

Toe oler acocrt goaltrnpr an interprobeteristoanticateo sin e fsis the design historyepnigtwhr
ncsaytoproducedbth ai soltown.h interpureer als.reordhis desghitrrelcisio proches inoanlexeutionl

traepasion availale ton e forinoption.

Finallyine-ordter-t beabeto- poide good oefruaednto thrext inoans intrcie foeashionpe oshave

deeop ted etpann system thnrsetadepatn seits randorigan. sifrainfrmteudryn

knowledge sources to construct a coherent text. This text planner supports dialogue with a
user [Moore and Paris, 1989, Moore and Paris, 1992, Moore, 1989]. User input can be stylized
English, menu based, or a hypertext-like interaction mousing parts of the explanation to request

4 0

(defconcept seaport
:is (:andport

(:exactly 1 r-location)
(:exactly 1 r-piers)
(:exactly 1 r-available-berths)
(:exactly 1 r-covered-storage-area))

Figure 2: Definition of a seaport in the domain model

(define-plan FIND-IF-SHIP-FITS-IN-SEAPORT
:capability (determine-whether-fits-in (OBJ (?s is (inst-of ship)))

(IN (?p is (inst-of seaport))))
:result-type boolean
:method (less-than (r-ship-length ?s)

(compute-max-vessel-length-in-seaport ?p)))

(define-plan COMPUTE-MAX-VESSEL-LENGTH- IN-SEAPORT
:capability (compute-max-vessel-length-in-seaport

(OBJ (?s is (inst-of seaport))))
:result-type number
:method (let ((?berth-types (r-berth-type (r-available-berths ?s))))

(max (r-berth-length ?berth-types))))

Figure 3: Two plans from the transportation domain.

clarifications [Moore and Swartout, 19901.
As we show in the scenario below, the design history plays a crucial role in the knowledge

acquisition process. In essence, it represents the functionality of the knowledge that the domain
model contains. It thus allows the system to reason about how knowledge will be used. This
is crucial as one cannot indiscriminately add new knowledge into a system but rather needs to
understand how that knowledge will be used. Otherwise, there is a danger that the knowledge
added be useless or incomplete to achieve the task for which the system is designed.

To do this type of reasoning, EXPECT creates links between the domain model and the design
history. Every relation or concept type referenced in a plan recorded in the design history is linked
to that relation or concept in the domain model.

As an example, Figure 5 shows the links created for the first plan shown in Figure 3. Given
these links and their place in the design history, EXPECT understands how the factual knowledge is
used and why. As we illustrate in the next section, this allows the system to create expectations for
knowledge acquisition, and thus guide the user in augmenting and debugging an existing system.

5

ULVaWprt4o-Ioalian (objs.IocrsiPs)

cakualeoa-cargo.-weight (objs) calcuaie-toW-slips (Iocjhips) dilibute-cargo (cagoships-avaidable)

fi&idscIp1of-l~o ocalion (10c) find-s ptps~-thalflt-on-seaport (portships)I I
... dedermine-whleth,-fits-in (poships)

reformulwionI 1
domoinc-wdeha-fits-in (pocL breakbulb) detemine-wethet-fits-in (port, containm) 0

dctcrminc-weter-fits-in (poish)...

conmpue-nxvesseI- length-in-scapom (port)

Figure 4: The design history

Importantly, because the system includes an explanation facility capable of producing coherent
explanations of the system's behavior, the system can justify to the user why it is asking specific
questions and provide feedback as to what is being added or changed. Furthermore, the user can
then at any point request documentation about any part of the knowledge base.

3 Augmenting a Knowledge Base

In this section, we show how EXPECT provides guidance based on expectations it forms from its
current knowledge. We illustrate the behavior we expect from this tool with two hypothetical
scenarios in our transportation domain.

3.1 Adding a New Instance

Figure 6 shows a scenario in which a user wants to extend the system to cover a new seaport. The
user starts the dialogue in line [1]. By reasoning about the existing domain model, EXPECT realizes
that a port can be either a seaport or an airport. It thus asks the user to be more specific (line [2]).

At this point, EXPECT reasons about its procedural knowledge and forms expectations as to what
other information about a seaport is needed. By understanding that its primary goal is to transport
objects and by examining the design history (Figure 4), EXPECT determines that it needs to know

6

Domain Model Design History

tranSport4o-ioc
K I

ship-length

ship

find-ship-types

determine-whether-fits

K Ii
K '

O concept

is-a relation

A disjoint-covering

3 1 relation
A^ links between domain model and design history

Figure 5: EXPECT creates links between the knowledge base and the design history that represent
the functionality of its knowledge. The knowledge acquisition tool makes use of them to form
expectations.

the types of the berths in a seaport in order to compute the maximum vessel length in that seaport,
as this step is required to figure out whether a ship fits in a seaport. This allows it to prompt the user
for that information (line [4]). Furthermore, because it kn,.ws why this information is needed and
because interactions are conducted through the explanation facility, EXPECT is able to justify to the
user the need for this question (lines [5-8]). Finally, again because of its explanation capabilities,
EXPECT can also provide help to the user by providing information about the current contents of
the knowledge bases, as illustrated in lines [9-11].

Notice that EXPECT is able to focus the knowledge acquisition process and only ask from the
user what is actually necessary for the task at hand (i.e., it does not automatically prompt the user
for all the roles defined on a seaport, shown in Figure 2). (The user is informed that entering
this information is optional, however, as shown in line [12]). This would not be possible by
reasoning only about the domain model, as a pure concept editor would. EXPECT can do so because
it understands how the declarative knowledge base is used during problem solving.

7

U: I want to define a new port called "Long Beach", whose location is "Los [P]
Angeles".

S: Is Long Beach a seaport or an airport? [2]

U: Seaport. It has 2 piers and 6 berths. [31

S: Ok. Now I need to know the types of the berths. [4]

U: Why? [51

S: This is needed to compute the length of a berth. I need tc know the length [6]
of a berth in order to compute the maximum ship length supported by a
seaport.

U: What for? [71

S: In this context, we are trying to transport objects to locations by using [81
ships. To do so, [...] This requires finding the ship types that fit in the
seaport. This is why I must compute the maximum ship length supported
by a seaport.

U: Ok. What types of berths are therm? [9]

S: I know of five types of berths. [...] [10]

U: Ok. The berths of Long Beach are [...] [11]

S: You may also tell me other information about Long Beach, like [12]
but it is not necessary. Do you want to specify any of those?

Figure 6: Hypothetical scenario - Adding a new instance

3.2 Modifying Existing Plans

Figure 7 shows a scenario in which the system is given a problem to solve.3 This problem involves
transporting a unit to the seaport of Cabra (line [1]). The system solves the problem and reaches
the conclusion that it takes 3 days (line [21). The user is surprised that it could be done so fast
in such a small seaport and asks why (line [3]). The system explains its conclusion by retracing
its reasoning (line [41), exploiting both the actual execution trace for this specific problem and the
design history. Notice that, at this point, only a summary of the whole reasoning is included in
the explanation, thus providing a high-level justification for the conclusion. The user can however
"zoom-in" on particular part of the problem solving by asking further questions. This is illustrated •
in line [5-6].

The justifications provided by the system allows the user to detect a potential error: he or she
disagrees with some of the information given by the system and provides conflicting information

3This interaction could occur some time after the new device has been added to the knowledge base and involve a
different user. It could also occur if the system developer simply wanted to give the system some problems as a way
of debugging and refining the knowledge bases after some modifications.

8

(line [71). Given this new information, EXPECT now reasons about its execution trace, attempting
to localize the problem, and a dialogue to debug the system is initiated.

First, EXPECT finds the exact point in the execution trace that led to the conclusion questioned
by the user and explains that part of the reasoning (line 181). This allows the user to detect the
problem more precisely. In this case, the user realizes that the plan to determine whether a ship fits
in a port is incorrect (or incomplete). The user thus provides the additional information, namely
that the draft of a ship must also be taken into consideration (line [9]).

As it turns out, the term draft is unknown to the system. Because the factual knowledge is
explicitly represented, EXPECT is able to go further in its debugging and hypothesizes that a domain
fact may be missing. The system presents the user with the relevant knowledge that is currently
available (both ships and berths have length, depth, and width) and asks the user if a new concept
is to be added (line [10]). The user could now add a new concept "draft". In this case, however, a
new concept is not needed as the word "draft" is being used to refer to the concept "depth" which
already exists in the knowledge base (line [11]). The user indicates to the system that the word
"draft" is used to refer to the "depth". From this, the system can add the word "draft" as a new
lexical item for the relation "depth". This wil then allow the system to refer to this relation in
terms understandable by experts in the domain (as opposed to system builders). Having added this
new lexical item, the system asks the user how to check the draft. Because the system already has
a plan to check the length, it uses it to form an expectation for how to check the draft, and presents
it as a suggestion to the user (line [12]). Upon positive reaction (line [13]), EXPECT summarizes
to the user the changes made to the procedural knowledge base (line [14]). Notice that since the
results of both checks are boolean, the system also has an expectation about how to combine them.
The plan is now corrected.

The next step for EXPECT is to check that the domain model has the information to complete the
task. The draft of the ships was never used before in a plan, and as a result, EXPECT never bothered
the user to acquire it. However, it now becomes relevant with the acquisition (or modification) of
the plan. The user is thus now asked for this information in line [161. Finally, after the problem
has been fixed, EXPECT re-works the original goal (line [17]).

4 Discussion

The two scenarios above illustrate several important points about EXPECT's knowledge acquisition
capabilities:

* It acquires information that the user may have forgotten to include in a definition either by
oversight or because lack of understanding as to what needs to be included in the knowledge
base. For example, the system decides that it needs a concept more specific than "port" for
Long Beach ("airport" or "seaport"). Thus, users (like the user in our scenario) do not have
to be system developers, but could be instead end-users, who need to enter new information
recently available.

* It is able to focus the knowledge acquisition process and only ask for the information that is
relevant to the task, thus avoiding burdening the user with many irrelevant questions. For
"example, in the first scenario, the system did not ask the user for all the roles that were defined

9

r

U: How long does it take to transport that unit to Cabra with the ships 11]
available?

S: 3 days [21

U: Why? [31

S: To transport unit X to a location, first I calculated that the total weight [41
of the cargo is 300,000 tons, then I determined that I can use 3 container
ships and 10 breakbulk ships, and distributed the cargo among the ships.
I then calculated how long it takes to transport this cargo with these
ships. It takes 3 days.

U: Why breakbulk ships? [5]

S: Caboverde is the seaport of Cabra, and determined that breakbulk ships [6]
fit in it.

U: This is wrong. Caboverde is too small a port for breakbulk ships. [7]

S: I concluded that breakbulk ships fit in Caboverde. To do this, I checked 181
that the ship length is less than the maximum vessel length in that seaport.
Is this right? (Yes; No; Yes with constraints)

U: Yes, with constraints: you have to check both the length and the draft. 19]

S: I know the length, width, and depth of ships and berth types. Should I 110]
add the draft? (Yes; No)

U: No. Draft is the depth for both ships and berths. [11]

S: I understand. I know how to check the length. Do I check the draft in a 112]
similar way? (Yes; No; Yes witV, onstraints)

U: Yes 1131

S: Ok. So to determine what ship types fit in a seaport, I determine if the [14]
ship length is less than the maximum vessel length in that seaport, and

then I determine if the ship draft is less than the maximum vessel draft
allowed in the seaport. Both have to be true in order for a ship type to
fit in a seaport. Correct? (Yes or No)

U: Yes [151

S: Ok. However, I don't know the draft of all ship types. Could you tell 1161
me [.]?
I[...]I

S: Re-solving the problem with the updated method for determining what (171
ship types fit in a seaport. It takes 10 days to transport the unit to Cabra.

Figure 7: Hypothetical scenario - Modifying existing plans

on a seaport. This capability is especially important when dealing with large knowledge bases

10

that might be shared among various systems. By reasoning about how knowledge is to be
used, EXPECT can focus on the information relevant for the task at hand.

e Because the system represents the domain principles and reasons about them to derive the
procedural knowledge, it is enough for the user to inspect and change information in the
domain principles, without having to know exactly what in the procedural knowledge that
change affects.

e The system is capable of explaining its behavior to the user. Explanations are central to the
design of our system. Specifically, in this case, the system can explain to the user why it is
requesting further information about berth types. The user can also zoom-in to specific parts
of the explanation, which allows selective inspection of the system's reasoning and leads to
detect the exact point that lead to the wrong conclusion. This is especially important if the
knowledge acquisition tool is to be used by users other than the system developer.

o The expectations described above are based on existing declarative and procedural knowledge
about the task domain. Expectations are not formed based solely on structure but also on the
contents of the knowledge base, and as a consequence EXPECT can justify the need for data
required from the user.

o The system, and not the user, is both responsible and aware of what is in the system, how
knowledge is structured and how it is being used. Knowledge acquisition is guided directly
by the current structure of the system and its contents. Structure and contents are the basis
for the dynamic creation expectations, instead of being predefined in the acquisition tool.

* Knowledge acquisition is tightly coupled with the explanation facility, which also relies
on the current structure and content of the knowledge sources. This capability provides
explanations and feedback to the user in appropriate English and in an interactive manner.

e It is also important to note that help can be provided even when the system has wrong ex-
pectations. The explanation facility provides a means for the user to examine the knowledge
base in search of the problem. Once the problem is located, the user will be able to enter the
information necessary to fix the bug directly.

Our scenarios show that users can either extend or correct the existing knowledge. Thus,
EXPECT can be used with knowledge bases that are incorrect or incomplete.

5 Related Work

Using available knowledge to create expectations is not a novel approach. Already in TEIRE-
SlAS [Davis, 1976] rule models captured expectations based on syntactic regularities of exist-
ing rules to predict the likely patterns of new ones. A stronger source of expectations is the
inference structure behind the task domain, which may be common to many different applica-
tions [Chandrasekaran, 1986, McDermott, 1988, Clancey, 19851. Most current tools for knowl-
edge acquisition exploit this type of expectations and are tailored to a specific problem-solving
method lEshelman and McDermott, 1986, Marcus and McDermott, 1989, Musen et al., 1988,

11

0

Bareiss et al., 19891). For example, a KA tool for heuristic classification expects to acquire map-
pings from input data into predefined classes and uses these expectations to guide the acquisition
process. Whether KA tools base their expectations on syntactic or inference structure, the expec- 0
tations are implicit in the tool. In EXPECT, the inference structure is not implicit: it is put together
by the APW from the different knowledge sources. However, neither the inference or the syntactic
structure are used by EXPECT to assist in KA. Instead, EXPEcT forms expectations based on the
content of the KBs and how the knowledge is used for problem solving.

Automated knowledge refinement tools cooperate with users in taking charge of some part of 0
the process of correcting a knowledge base. For learning apprentices, an expert provides problem-
solving traces [Wilkins, 1988] or solutions [Mitchell et a., 1990, Tecuci, 1992] and the system
takes responsibility for adjusting its knowledge base to cover that desired behavior with minimal
user interaction. It is not practical in many cases to put the burden on the user to provide solutions
and/or traces of when problems are complex. For example, in our domain, calculating how many •
days it takes to transport a unit is a complicated and detailed procedure. Furthermore, it probably
would not help much if the user indicates that the correct answer is 10. We take a different
approach as to what part of the learning process to automate. Our tool will provide help to the
user for navigating through its reasoning and pinpoint erroneous steps. It will take responsibility
for suggesting corrections (based on expectations) and for making the adequate changes in the •
knowledge base. In other words, the user's mission is to understand what was at fault and the
system's to suggest and carry out any repairs.

6 Conclusions and Future Work •

EXPECT 's knowledge acquisition tool can be used in early stages of development of a KBS. At
that time, the knowledge bases are not very populated, so EXPECT does not have a good basis to
form expectations but it will do so whenever possible. The more knowledge there exists in the
system, the more helpful the tool is in the acquisition of additional knowledge. We also believe that
knowledge from other task domains can be brought about to aid in the acquisition of knowledge
early on in a new application [Gil and Paris, 19931.

We plan to develop a full-fledged analogy component to facilitate the acquisition of new plans.
In our second scenario, the new plan for checking the depth has a very direct analogy to the existing
plan for checking the length. The correspondence is most of the times not so direct. Yet, existing
plans can be used as a starting point for new plans. As for providing good suggestions for repairs,
we will use as a starting point the techniques developed in [Gil, 199 11 to correct planning domains.

Finally, we plan to incorporate validation mechanisms to ensure that proposed modifications will
not corrupt other parts of the system, or alternatively, check whether the modification could expose
previously undetected problems in the knowledge bases. The rich execution traces of problem
solving activities will serve as a history of past experience. EXPECT would maintain a set of test
cases from this experience, and we plan to look into criteria for selecting which execution traces to
include in such a test suite.

1

12

Acknowledgments

We would like to thank Kevin Knight, Craig Knoblock, Vibhu Mittal, Eric Meltz, Bill Swariout
and the anonymous reviewers for their helpful comments on earlier drafts of this paper as well as
some of the research described here. We gratefully acknowledge the support of ARPA with the
contract DABT63-91 -C-0025.

References

[Anderson, 19831 J. R. Anderson. Knowledge Compilation: The General Learning Mechanism.
In R. S. Michalski, editor, Proceedings of the International Machine Learning Workshop, pages
203-212, Monticello, IL, June 1983. University of Illinois at Urbana-Champaign Department
of Computer Science.

[Bareiss et al., 19891 Ray Bareiss, Bruce W. Porter, and Kenneth S. Murray. Supporting Start-to-
Finish Development of Knowledge Bases. Machine Learning, 4(3/4):259-283, 1989.

[Chandrasekaran and Swartout, 19911 B. Chandrasekaran and William Swartout. Explanations in
Knowledge Systems: The Role of Explicit Representation of Design Knowledge. IEEE Expert,
6(3):47-50, June 1991.

(Chandrasekaran, 19861 B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-
level building blocks for expert system design. IEEE Expert, 1(3):23-30, Fall 1986.

[Clancey and Letsinger, 1981] William J. Clancey and Reed Letsinger. NEOMYCIN: Reconfig-
uring a Rule-Based Expert System for Application to Teaching. In Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, pages 829-836, Vancouver, B. C.,
Canada, 1981.

[Clancey, 1983a] William J. Clancey. The Advantages of Abstract Control Knowledge in Expert
System Design. In Proceedings of the Third National Conference on Artificial Intelligence,
pages 74-78, Washington, D.C., August 22-26, 1983.

[Clancey, 1983b] William J. Clancey. The epistemology of a rule-based expert system: a frame-
work for explanation. Artificial Intelligence, 20(3):215-251, 1983.

[Clancey, 1985] W. J. Clancey. Heuristic classification. Artificial Intelligence, 27(3):289-350,
December 1985.

[Davis, 1976] Randall Davis. Applications of Meta-level Knowledge to the Construction, Mainte-
nance, and Use of Large Knowledge Bases. PhD thesis, Stanford University, 1976.

[Dietterich, 19861 Thomas G. Dietterich. Learning at the Knowledge Level. Machine Learning,
1(3):287-316, 1986.

* [Eshelman and McDermott, 19861 L. Eshelman and J. McDermott. MOLE: A Knowledge Ac-
quisition Tool That Uses its Head. In Proceedings of the National Conference on Artificial
Intelligence, pages 950-955, Philadelphia, PA, August 1986. AAAI.

13

[Gil and Paris, 1993] Yolanda Gil and C~cile L. Paris. To"'ards general-purpose knowledge ac-
quisition. To appear in the Proceedings of the IJCAI-93 workshop on Machine Learning and
Knowledge Acquisition, 1993.

[Gil, 1991] Yolanda Gil. A Domain-Independent Framework for Effective Experimentation in
Planning. In Proceedings of the Eight International Workshop on Machine Learning, Evanston,
IL, 1991. Morgan Kaufmann.

[Kitto, 19891 C.M. Kitto. Progress in Automated Acquisition Tools: How close are we to replacing
the knowledge engineer. Knowledge Acquisition, 1, 1989.

[MacGregor, 19881 Robert MacGregor. A Deductive Pattern Matcher. In Proceedings of the
Seventh National Conference on Artificial Intelligence, St. Paul, Minnesota, August 1988.

[Marcus and McDermott, 1989] S. Marcus and J. McDermott. SALT: A Knowledge Acquisition
Language for Propose-and-Revise Systems. Artificial Intelligence, 39(1):1-37, May 1989.

[McDermott, 19881 John McDermott. Preliminary steps towards a taxonomy of problem-solving
methods. In Automating Knowledge Acquisition for KBS. Kluwer, 1988.

[Mitchell et al., 19901 T. M. Mitchell, S Mahadevan, and L. Steinberg. LEAP: a learning apprentice
for VLSI design. In Machine Learning: An Artificial Intelligence Approach, volume 3. Morgan
Kaufmann, San Mateo, CA, 1990.

[Moore and Paris, 19891 Johanna D. Moore and C6cile L. Paris. Planning Text For Advisory
Dialogues. In Proceedings of the Twenty-Seventh Annual Meeting of the Association for Com-
putational Linguistics, pages 203-211, Vancouver, B.C., Canada, June 26-29 1989.

[Moore and Paris, 19911 Johanna D. Moore and Cdcile L. Paris. Requirements for an Expert
System Explanation Facility. Computational Intelligence, 7(4), 199 1.

[Moore and Paris, 19921 Johanna D. Moore and C6cile L. Paris. Planning Text for Advisory
Dialogues: Capturing Intentional, Rhetorical and Attentional Information, 1992. Technical
Report from the University of Pittsburgh, Department of Computer Science (Number 92-22)
and USC/ISI; Submitted for publication.

[Moore and Swartout, 19891 Johanna D. Moore and William R. Swartout. A Reactive Approach
to Explanation. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 1504-1510, Detroit, Michigan, August 20-25 1989.

[Moore and Swartout, 19901 Johanna D. Moore and William R. Swartout. Pointing: A Way To-
ward Explanation Dialogue. In Proceedings of the National Conference on Artificial Intelligence,
pages 457-464, Boston, MA, July 29 - August 3 1990.

[Moore and Swartout, 19911 Johanna D. Moore and William R. Swartout. A Reactive Approach
to Explanation: Taking the User's Feedback into Account. In Ccile L. Paris, William R.
Swartout, and William C. Mann, editors, Natural Language Generation in Artificial Intelligence
and Computational Linguistics, pages 3-48. Kluwer Academic Publishers, Boston, 1991.

14

[Moore, 19891 Johanna D. Moore. A Reactive Approach to Explanation in Expert and Advice-
Giving Systems. PhD thesis, University of California, Los Angeles, 1989.

[Musen et al., 1988] M.A. Musen, L. M. Fagan, D.M. Combs, and E. H. Shortliffe. Use of a
Domain Model to Drive an Interactive Knowledge Editing Tool. International Journal of
Man-Machine Studies, 26:105-121, 1988.

[Neches etal., 19851 Robert Neches, William R. Swartout, and Johanna D. Moore. Enhanced
Maintenance and Explanation of Expert Systems Through Explicit Models of Their Develop-
ment IEEE Transactions on Software Engineering, SE- 11 (11): 1337-1351, November 1985.

[Newell, 1981] A. Newell. The knowledge level. Al Magazine, 2(2):1-20,33, Summer 1981.

[Paris, 1991] Cdcile L. Paris. Generation and Explanation: Building an Explanation Facility
for the Explainable Expert Systems Framework. In C6cile L. Paris, William R. Swartout,
and William C. Mann, editors, Natural Language Generation in Artificial Intelligence and
Computational Linguistics, pages 49-81. Kluwer Academic Publishers, Boston, 1991.

[Pollack et al., 1982] Martha E. Pollack, Julia Hirschberg, and Bonnie Lynn Webber. User Partic-
ipation in the Reasoning Processes of Expert Systems. In Proceedings of the Second National
Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, August 18-20 1982. A longer
version of this paper is available as a Technical Report from the University of Pennsylvania,
Report Number CIS-82- 10.

[Project, 1993] The EES Project. The Explainable Expert System: user's manual, 1993. Working
notes.

[Swartout and Smoliar, 1987a] William R. Swartout and Stephen W. Smoliar. Explaining the link
between causal reasoning and expert behavior. In Proceedings of the Symposium on Computer
Applications in Medical Care, Washington, D. C., November 1987. (also to appear in "Topics
in Medical Artificial Intelligence"; Miller, P.L. (ed), Springer-Verlag).

[Swartout and Smoliar, 1987b] William R. Swartout and Stephen W. Smoliar. On Making Expert
Systems More Like Experts. Expert Systems, 4(3): 196-207, August 1987.

[Swartout etal., 1991] William R. Swartout, C~cile L. Paris, and Johanna D. Moore. Design for
Explainable Expert Systems. IEEE Expert, 6(3):58--64, June 1991.

[Swartout, 1981] W. Swartout. Explaining and Justifying Expert Consulting Programs. In Pro-
ceedings of the Seventh International Joint Conference on Artificial Intelligence, pages 815-823,
Vancouver, B. C., Canada, August 198 1.

[Tecuci, 19921 Gheorghe D. Tecuci. Automating Knowledge Acquisition as Extending, Updating,
and Improving a Knowledge Base. IEEE transactions on Systems, Man, and Cybernetics,
22(6):1444-1460, 1992.

[Wilkins, 1988] David C. Wilkins. Knowledge base refinement using apprenticeship learning
techniques. In Proceedings of the Seventh National Conference on Artificial Intelligence, St.Paul,
MN, 1988.

15

